Crosstalk Cascades for Frame-Rate Pedestrian Detection
نویسندگان
چکیده
Cascades help make sliding window object detection fast, nevertheless, computational demands remain prohibitive for numerous applications. Currently, evaluation of adjacent windows proceeds independently; this is suboptimal as detector responses at nearby locations and scales are correlated. We propose to exploit these correlations by tightly coupling detector evaluation of nearby windows. We introduce two opposing mechanisms: detector excitation of promising neighbors and inhibition of inferior neighbors. By enabling neighboring detectors to communicate, crosstalk cascades achieve major gains (4-30× speedup) over cascades evaluated independently at each image location. Combined with recent advances in fast multi-scale feature computation, for which we provide an optimized implementation, our approach runs at 35-65 fps on 640× 480 images while attaining state-of-the-art accuracy.
منابع مشابه
Boosting algorithms for detector cascade learning
The problem of learning classifier cascades is considered. A new cascade boosting algorithm, fast cascade boosting (FCBoost), is proposed. FCBoost is shown to have a number of interesting properties, namely that it 1) minimizes a Lagrangian risk that jointly accounts for classification accuracy and speed, 2) generalizes adaboost, 3) can be made cost-sensitive to support the design of high detec...
متن کاملFar-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching
Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two...
متن کاملStereo - and Neural Network - Based Pedestrian
In this paper, we present a real-time pedestrian detection system that uses a pair of moving cameras to detect both stationary and moving pedestrians in crowded environments. This is achieved through stereo-based segmentation and neural network-based recognition. Stereo-based segmentation allows us to extract objects from a changing background; neural network-based recognition allows us to iden...
متن کاملStereo- and neural network-based pedestrian detection
In this paper, we present a real-time pedestrian detection system that uses a pair of moving cameras to detect both stationary and moving pedestrians in crowded environments. This is achieved through stereo-based segmentation and neural network-based recognition. Stereo-based segmentation allows us to extract objects from a changing background; neural network-based recognition allows us to iden...
متن کاملA Filter Module Used in Pedestrian Detection System
Most pedestrian detection systems are built based on computer vision technology and usually are composed of two basic modules: object detection module, and recognition module. This paper presents an efficient filtering module, which works between the two basic modules, based on extracting the 3-dimensional information from single frame images. The filter module removes the noisy objects extract...
متن کامل